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The law governing the size distribution of detached gas-liquid streams of 
drops has been determined analytically, and a comparison is carried out against 
experimental data existing in the literature. The derived theoretical rela- 
tionships offer an excellent description of existing experimental results. 

The detachment of drops from the surface of a fluid streamlined by a stream of gas 
(vapor) is observed in steam separators, in nozzles, in the operating grids of turbines, as 
well as in a variety of atomization devices. In all of these cases one of the most impor- 
tant parameters of the process is the size of the forming drop, and in order to achieve cor- 
rect calculations it is important not only to know the average values but also the law govern- 
ing drop distribution. At the present time, based on an experimental study of drop forma- 
tion this is assumed to be a normal law or one that is logarithmically normal [i, 2]. How- 
ever, it seems to us that such an approach is not fully justified. First of all, the com- 
bination of a group of drops into one of uniform size is arbitrary to a considerable extent 
and, secondly, the postulated normal law nevertheless requires empirical information regar- 
ding the average size and dispersion that occurs in each specific case, which makes the theo- 
retical description of the process extraneous. 

In the present study we undertake an analytical derivation of the law of drop distribu- 
tion by size on fluid detachment from wave crests at a film surface attracted by a stream 
of gas. In this case, the process of drop formation exhibits the following characteristics 
[3]: the surface of the film is covered by waves whose crests periodically detach and are 
entrained in the form of drops exhibiting various diameters. The detachment occurs from large 
waves in a turbulent gas core. Between the large waves there exists a minor ripple that does 
not participate in the drop formation. 

Let us examine the liquid particle participating in the detachment process. This parti- 
cle is affected by the force of inertia m'a, balanced by the detaching force F 0 and the force 
of adhesion Fad: 

m'  a = F o - -  Fad. ( 1 )  

At the instant of separation, the force of adhesion Fad = o~ assumes a zero value. If we 
assume that the velocities of streamlining are sufficiently large and that the force of sepa- 
ration is determined primarily by the magnitude of the relative velocity, it may be assumed 
to be constant in the period from the onset of detachment all the way to its conclusion. It 
then follows from (i) that 

F o = m ' ~ .  ( 2 )  

The onset of separation is characterized by equality between the forces of separation and 
adhesion, i.e., zero acceleration, so that with consideration of (2) we therefore derive from 
(i) the following relationship: 

m ' ~  = e L .  
(3) 

The law of motion for a solitary drop allows us to write the following expression for the 
left-hand side of equality (3): 
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The coefficient c here, according to 

C = k, ( -  

where k 1 and k e depend  on Re = 2 u o r o ' / v " .  

From (3) and (4) we obtain 

1 

S 2 = 

g 
m' ao = csp" 2 

[i], is determined from a formula of the form 
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or with consideration of the sphericity of the separating drops (s = ~r0 '2) 

u0 
(%)-1 _ [2gL (aCp")-l] 1/~ 

L e t  us  i n t r o d u c e  t h e  n o t a t i o n :  

(4) 

(5) 

(6 )  

(7) 

xI = UOR . X~ = ( 2~L )1/2 R 
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Then equality (7) is written in the form 

x, 
x ~  . . . .  . ( 8 )  

x ,  

Let us examine the random quantities X I, X 2, X s. We will assume these to be constant, 
having the following density distributions fz(xl), f=(x2), f3(x3), respectively. If f(xx; 
x=) is the density of distribution for the vector (XI; X2), then we can write the relation- 

ship from [4] as follows: 

= 0 

and in  t h e  c a s e  o f  t h e  i n d e p e n d e n c e  and n o n n e g a t i v e n e s s  o f  X 1 and X 2 

T 
d=. ( 9 ) 

0 

Let us return once again to the random quantity X I = u0" - u 0' It represents the dif- 
ference in the velocities of the gas at the point of separation and the drop that has just 
been formed. For each lateral coordinate z this difference randomly assumes some value from 
the range defined, for example, by the intensity of the turbulent pulsations of the flow. 
We can then regard the probability of the event Fz(x l) = PI(X < xl) to be dependent on the 
parameter z, while the totality of events X I < Xl(Z) can be treated as a space of elementary 
events. Correspondingly, the total derivative of the function F 1 with respect to the parameter 
z is equal to 0, as a result of which for fz(xl) = 8F1/Sxz the following continuity equation 

is valid: 

d z  - k Oz q-- '-~z ~ T  [i dxl = o. ( io)  
0 

The velocity gradient along the lateral coordinate depends exclusively on the transverse 
coordinate and therefore dxl/dz = ~(z). In this case, any function of the following form 

will serve as a solution of Eq. (i0): 

z 

0 

The initial condition fz(xl; O) = ~0(xl) specifies a certain distribution for the random quan- 
tity X I = u0" - u0' We will set the zero level z = 0 at the edge of the boundary layer, 
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where the core of the flow has been formed. Then fl(xl; O) serves as a characteristic of 
the probable distribution of the random quantity X I in the zone of developed turbulence in 
which the averaged velocity of the gas is independent of the transverse coordinate. Since 
even the highest crest of the wave on the film is still tightly bound to the main mass at 
the instant of separation, it might be assumed that the entire spectrum of possible values 
for u0" = u 0' is determined exclusively by the pulsations in the gas velocity u0". Results 
from the measurements of velocity pulsations [5] enable us to draw the conclusion that the 
appearance of any velocity out of some range of AX I = Xlmax -- Xlmin is equiprobable. The 
initial condition for Eq. (i0) will then be 

1 1 , Xl E [Xlmln,  Xx max] 
]el(X1; 0 ) =  , /~1 ' ' =  xl Inax__x,  lmln 

O, X ~ Ix1 mtn, Xxmax] 

The corresponding solution 

I 
fl (X1, Z) : AX""~' Xl ~ [Xlmln' Xlmax] (12) 

Having substituted (12) into (9) and having carried out the replacement ~x 3 = 8, we ob- 
tain the following expression for the density f3(x3): 

Xlmax 
l x, 

f~(x3) = ax---~- [ =h(~)a0:. (13) 
Xlmtn 

xl 

In this study we will not investigate the general properties of integral (13). Let us note 
only that this integral is equal to the constant in the interval [X3min , X3max] (outside of 
which it is equal to zero) independent of the distribution of the random quantities XI, X2; 
this is valid for the functions f2(x2) such that integral (13) through direct integration 
reduces to a constant number. For example, for f2(xa) = const/x22. Moreover, we can indi- 
cate a method of constructing a family of random quantities approximating a rather broad class 
of quantities X2, so that f3(x3) is equal to the constant. Let us introduce the random quan- 

n 

tities y, assuming n values Yl < Y2 < ... < Yn with probabilities Pl, P~ .... Pn~p~== I) so that 

for k = 2, 3, .... n, Xlmax/Y k = Xlmin/Yk_ l and for k = i, 2, ..., n, xkP k = const. It is 
obvious that for the random quantities y and for the limit random quantity (as n + ~) f3(x3) 
will be constant. 

It is not difficult to note that, general speaking, integral (13) depends on the loca- 
tion of the ends of the distributions for the random quantities XI, X2, X 3. Specifically, 
if 

~mln X~aax (14) 

then x 3 is uniformly distributed. Let us estimate the values of the ends in our case: 

Xlmln 

XSmln 

XlmaY.. 

Xsmax 

( ) r, //Omtn R /~ --I ttOmln Omax 

, 70max "V" 

fOrain 

UOmax F;mtn 
'V" 

(15) 

We will estimate r0min' and r0max' by using the results of observations into the behavior 
of the film. It has been demonstrated experimentally in [6] that in addition to large waves, 
a minor ripple also exists. It is natural to assume that these smallest drops are formed 
as a result of the separation of microwaves from the ripples, as in the atomization of a jet. 
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Fig. i. Comparison of results from calculations according to 
formulas (16), (20), and (22) with the hydrograms from [9]. 
The distance from the film surface is 1.54-2.31 mm; ethyl al- 
cohol: a) u" = 55 m/sec; b) ii0. g(r0'), Dm-Z; r0', ~m. 
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Fig. 2. Comparison of the results for calculations according 
to formulas (16), (20), and (23) with the experimental data 
of [9] (the circles denote experiment): a) water; b) ethyl 
alcohol, r0' , Bm; u", m/sec. 

Following [7], we will write the condition for the wavelength X of a low-viscosity liquid 
for which the wave will be unstable: 

The smallest possible unstable length is: 

~mtn -- 

2~a 
p-u  

2ha 

For the radius of the smallest drop we can therefore assume 

�9 ~,n _ ~____t_ ~ 
romin = - 7  ~ p ~  (16) 

If the small waves are formed as a result of the development of intrinsic oscillations 
in the film, the appearance of large overlapping waves is more reminiscent of analogous pro- 
cesses occurring on the surface of reservoirs under the action of the wind. For this case, 
[7] provides an analytical relationship between the wavelength X and the local relative velo- 
city u, which provides for its nonattenuating propagation: 

~ =  16~z~ ~v'u' .~ (17)  
c ~  

Here u' is the velocity of the liquid at the separation surface. Usually u' is regarded as 
the sum of the average flowrate and the mean phase velocity. Measurement results are pre- 
sented in [8] for the average flowrate and phase velocity over a rather broad range of gas 
velocities u". With high u" these data can be generalized approximately by the relationship 

u' ~ 0,083 ~ .  ( 18 ) 
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Substituting (18) into (17), in the case of c = 0.5 and u = u" - u' we obtain 

~maz = 3],]4p'~' 
(19) p'e 

For large waves, unlike the case of small waves, the relationship r0max' = lmax/4 is consider- 
ably less accurate, since the amplitude of the larger waves at the instant of separation con- 
siderably exceeds the length of their bases. Such a definition of r0max' enables us only 
to estimate the orders of magnitude. However, it is validated when the condition r0max' 
r0min' is observed, because in this case the change in the quantity r0max' has little effect 
on the results of calculations carried out in accordance with formulas (17) and (118). Then, 
with consideration of (22), we have 

r' ;Lma= 7,78 p' v' "-/ 
Omax = ' 4 - -  p ' ~  ( 2 0 )  

C o r r e s p o n d i n g l y ,  c o n d i t i o n  (14)  can be r e w r i t t e n  in  t h e  form 

S a t i s f a c t i o n  o f  t h i s  c o n d i t i o n  e n s u r e s  t h e  c o n s t a n c y  o f  i n t e g r a l  (13)  and ,  c o n s e q u e n t l y ,  t h e  
u n i f o r m  d i s t r i b u t i o n  o f  t h e  random q u a n t i t y  X 3. I f  we assume t h a t  U0min may be as  s m a l l  as  
d e s i r e d ,  and Lmi n and Lma x a r e  on t h e  o r d e r s  o f  t h e  c o r r e s p o n d i n g  r a d i i ,  t h e n  w i t h  U0max n o t  
overly large (16) will always be satisfied. Then, if X 3 is distributed uniformly, X3 -l is 
distributed in accordance with the law A/x 2. The radii of the forming drops are distributed 
in precisely the same way, and namely: 

B e(r ) = 
ro 

To determine the constants we can make use of the properties of distribution density 

r 

r0~ 

g (r~) dr" o = 1, 

r Om in 

from which it follows that 

and 

r �9 �9 
B ----- - Omax romin 

r o m a x -  rOmin 

r �9 
Omax rOmln 

e ( r o )  = , . . . .  
(romax -- romln) ro (22) 

For the mean radius we take the mathematical expectation 

romax " " r" 

; 0 - - = - -  
r'o == g (r  r o dr  = romax romm 111 O=.x 

�9 r o m a x  - -  r o s i n  romm (23)  
| r Omln 

Calculations based on formulas (16), (20), (22), and (23), and their comparison with the ex- 
perimental results of [9], are shown in Figs. 1 and 2. The increase in the divergence in 
the mean radii for water with the smaller ~" is associated with the violation of the condition 
r0ma x' ~ r0min' and, correspondingly, by the considerably greater influence of error in the 
determination of r0max'. 

NOTATION 

m, mass; a , acceleration; s length of the line bounding the plane of separation 
as a function of the time ~; L = s o, surface tension; Fad = oL, force of adhesion; p, 
density; u, velocity; v kinematic viscosity; r' particle radius; r0max' and r �9 ' maximum 

' ' 0mln , 
and minimum possible particle radii; u", average gas flowrate; R, characteristic dimension. 
Superscripts ', ", and 0 pertain to the liquid, gas, and the instant of separation. 
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GAS PERMEABILITY OF NUCLEAR MEMBRANES AS A FUNCTION 

OF EFFECTIVE PORE DIAMETER 

V. V. Surguchev, V. N. Tokmantsev, V. D. Seleznev, 
and B. T. Porodnov 

UDC 533.15:533.6 

We have examined experimentally and theoretically the transport of various 
gases in channels with a diameter comparable to that of the molecule dimen- 
sions. 

Interest in the processes of gas transport in membranes with ultrasmall pores exhibiting 
diameters of D < i0 nm is associated with the possibility of achieving an optimum combination 
of their permeability with high selective properties. Such membranes may result, for example, 
as an intermediate product in the production of quartz glass [i]. However, the indeterminacy 
of the geometric structure of porous glasses limits their selectivity and hinders interpreta- 
tion of experiments [i] into the gas permeability at the microscopic level of the description. 

In recent times so-called nuclear membranes (filters) have gained ever-increasing accep- 
tance, and these filters are produced through the irradiation of polymer films with fission 
fragments in nuclear reactions [2] or by heavy ions in charged-particle accelerators [2-4], 
and the subsequent chemical etching of the tracks. Pores most nearly cylindrical in shape 
are obtained here with limited dispersion by size as a consequence of the above-described 
method by irradiation of films made of polyethylene terephthalate (PETP) [2]. The regular 
pore geometry of such a nuclear filter, given their ultrasmall dimensions, comparable to the 
characteristic dimensions of the potentials of intermolecular interactions, offers a unique 
possibility of establishing the relationship between the parameters of gas permeability through 
the filter and the microscopic characteristics of the gas and of the channel surfaces. 

Isothermal (T = 300 K) measurements of the permeability of He, Xe, Ar, and N 2 have been 
conducted in the present study on two specimens of nuclear PETP membranes whose pore diameters 
ranged in the interval 1.5-10 nm; these measurements have been carried out on these membranes 
in a series of "load-unload" cycles [5]. The experimental relationship of the relative perme- 
ability and the pore dimension is interpreted on the basis of a theoretical approach such 
as that covered in [6-8], within the scope of which we derive a solution to the system of 
interconnected kinetic equations for the functions of the distribution of free and adsorbed 
gas molecules within the channel. 
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